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The problem of secure consensus for multi-agent systems (MASs) is tackled in this study.
The self-triggering strategy is designed to enable each healthy agent to estimate its next

triggering step at the current triggering step. Thus, each healthy agent only needs to

sense and broadcast at its triggering steps, and to monitor the latest broadcast states of
their neighbors at their triggering steps. The frequent monitoring is thereby mitigated.

Subsequently, a self-triggering secure consensus algorithm is developed to guarantee that

the state variables of healthy agents reach consensus despite the influence of faulty agents
in the network. The convergence analysis of the proposed method is conducted with

graph tools and Lyapunov theory. Numerical examples are given to illustrate the superior

performance of the proposed self-triggering secure consensus algorithm compared with
the existing methods based on the static and dynamic event-triggering mechanisms.

Keywords: Secure consensus; self-triggering mechanism; multi-agent system.

1. Introduction

Over the past decade, the study of consensus-seeking problems for multi-agent sys-

tems (MASs) has garnered significant attention due to its wide range of applications

in fields such as robotics, multi-UAV systems, and sensor networks.1–5 In such prob-

lems, multiple agents possess individual dynamics, share limited local information,

and aim to achieve agreement on certain state variables. However, in practical sce-

narios, the security problem is critical in the MAS due to its distributed property

and simple hardware, as well as being in open environments.6,7 Specifically, adver-

sarial attacks may be injected into one or several vulnerable nodes and spread over

the network. As stated in Ref. 8, even the compromise of a single vulnerable node

may ultimately lead to system crash. Therefore, development of algorithms secure

to adversarial attack has become increasingly essential.

In the context of secure control for MASs, a widely-used attack model is that

the number of faulty agents in the neighbor set of each healthy agent is upper

bounded. One attack-tolerant solution to this type of attack is the weighted mean-

subsequence-reduced (W-MSR) algorithm.9 The core idea is that a healthy agent

with sufficient neighbors’ state variables can perform the state update normally

by eliminating the potential information. This seminal work was subsequently ex-

tended to miscellaneous system dynamics, network structures, and application sce-

narios, e.g, higher-order MASs, time-varying networks, and distributed optimiza-

tion.10–12 Variants of this kind of algorithm have also been developed from different

perspectives, e.g., multidimensional-bipartite-absolute-MSR (MBA-MSR), trusted-

edge MSR (TE-MSR), and second-order MSR (S-MSR) algorithms.10,13,14

Although the W-MSR algorithm can efficiently eliminate the for healthy agents,

it renders the MAS bear heavy communication burden. Specifically, for the purpose

of threat elimination and state update, each healthy agent needs to communicate

with its neighbors at each time step to obtain their state variables. This opera-

tion consumes massive communication and is unnecessary when the state variables

of healthy agents approach consensus. To avoid the frequent communication be-

tween agents, an event-based MSR (E-MSR) algorithm was proposed in Ref. 15.

The introduction of (static) event-triggering mechanism renders the healthy agents
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communicate with their neighbors only when the designed triggering function is ac-

tivated. Subsequently, a dynamic event-triggering MSR (DE-MSR) algorithm was

further developed in Ref. 16, where the triggering function is associated with sys-

tem state, i.e., it can dynamically change as the system state evolves. It has been

validated that both of these two mechanisms can save communication resources and

reduce communication overheads for MASs.

Despite the effectiveness of the existing event-based secure consensus algorithms

in mitigating the communication burden, a common characteristic of them is that

they need to frequently monitor the latest broadcast states of neighbors. This is be-

cause the healthy agents do not know when their neighbors will trigger. To address

these issues, the self-triggering mechanism has emerged as an effective strategy for

improving both the security and efficiency of consensus in MAS. Unlike traditional

periodic control approaches, which require continuous or frequent communication,

self-triggering control allows agents to determine the next triggering step at the

current triggering step, thus reducing unnecessary data transmissions and saving

system resources. This is particularly useful for systems where energy or band-

width is limited. The frequent monitoring of neighboring agents’ states can also

be avoided with the self-triggering mechanism. In Ref. 17 and Ref. 18, the self-

triggering strategy is designed to address the average consensus problem in the

continuous-time and discrete-time domains, respectively. In hostile environments,

Matsume et al.19,20 developed a self-triggering secure consensus algorithm based on

the ternary control. However, these two studies require additional clock variables

to facilitate the self-triggering strategy and merely achieve approximate secure con-

sensus, i.e., the state variables of healthy agents converge to an error range instead

of the consensus value.

Inspired by the aforementioned observations, a self-triggering secure consensus

algorithm for MASs is developed in this paper. The algorithm is comprised of the

self-triggering part and the attack-tolerant part. Therein, the self-triggering part

is designed to render each agent determine its next triggering step at the current

triggering step. The attack-tolerant part helps the healthy agents eliminate the

potential malicious information received from their neighbors. The convergence

analysis of the proposed control protocol is conducted with Lyapunov theory.

The main contributions of this paper are summarized as follows.

(i) The secure consensus problem for MASs with the self-triggering mechanism is

addressed in this paper. Compared with Refs. 17, 18 that adopt the self-triggering

mechanism to achieve average consensus, we guarantee that the state variables of

healthy agents reach consensus within a safety interval, despite the misbehavior

of faulty agents in the network. Verifiable sufficient conditions to ensure secure

consensus are further derived through a rigorous Lyapunov-function-based ap-

proach.

(ii) A self-triggering secure consensus algorithm is designed, which enables the agents

in the MAS to calculate the next triggering step at the current triggering step,
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thereby avoiding the frequent monitoring to the latest broadcast states of neigh-

bors. Compared with the studies in Refs. 15, 16 that address the secure consensus

problem based on the static and dynamic event-triggering mechanisms, the pro-

posed self-triggering strategy can save more communication resources, which is

particularly useful in limited energy or bandwidth scenarios.

(iii) Different from the self-triggering secure consensus schemes in Refs. 19, 20 that

rely on ternary control to achieve self-triggering control and merely pursue ap-

proximate secure consensus, this paper integrates the self-triggering mechanism

into controller design, which is more lightweight to implement. Furthermore,

the proposed self-triggering secure consensus algorithm achieves exact secure

consensus, where the state variables of healthy agents converge to the identical

reference value instead of an error range.

The rest of this paper is organized as follows. In Section 2, the self-triggering mech-

anism is introduced and the secure consensus problem is formulated. In Section 3,

the theoretical analysis is conducted to guarantee secure consensus with the pro-

posed self-triggering attack-tolerant algorithm. Then, two comparative numerical

results are illustrated and discussed in Section 4. Finally, the conclusions are drawn

in Section 5.

2. Problem Formulation

In this section, we present the dynamic model of the MAS with the self-triggering

mechanism, the model of adversarial attack, and the formulation of secure consensus

problem.

2.1. Graph theoretical preliminaries

Consider a multi-agent network modeled by a digraph G = (V, E), where V =

{1, . . . , n} is the node set and E ⊆ V×V is the directed edge set. The edge (j, i) ∈ E
represents that agent j can send messages to agent i. Let Ni = {j ∈ V|(j, i) ∈ E}
be the neighbor set of agent i.

We consider the scenario that the multi-agent network is subject to adversarial

attacks, and our strategy is to exploit the data redundancy of the network to counter

adversarial attacks. The following definitions quantify the data redundancy with

respect to (w.r.t.) sets and graphs, respectively.

Definition 1 (r-reachable set).9 Consider a digraph G = (V, E) and a nonempty

subset S ⊂ V. The set S is said to be r-reachable if ∃ i ∈ S such that |Ni\ S |≥ r,

where r ∈ Z+.

Definition 2 (r-robust graph).9 A digraph G = (V, E) is said to be r-robust if

for each pair of nonempty and disjoint subsets S1,S2 ⊂ V, at least one of them is

r-reachable, where r ∈ Z+.
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2.2. System model with self-triggering mechanism

Consider a multi-agent network modeled by G = (V, E). Each agent i ∈ V has a

discrete-time state variable xi[t] ∈ R, which adheres to the following update rule:

xi[t+ 1] = xi[t] + ui[t]. (1)

The corresponding control input ui[t] ∈ R is designed as

ui[t] = ε
∑
j∈Ni

θij [t](x̂j [t]− x̂i[t]), (2)

where ε ∈ (0, 1) is a control gain and x̂j [t] denotes the latest broadcast state of

agent j at time step t, which is mathematically expressed as

x̂j [t] = xi[t
j
h], k ∈ [tjh, t

j
h+1), (3)

where {tj0, t
j
1, . . . ∈ Z>0} denotes the sequence of triggering steps of agent j. By

combining Eqs. (1), (2) and (3), the state variable of agent i at time steps t ∈
[tih, t

i
h+1) can be rewritten as

xi[t] = xi[t
i
h] + (t− tih)ε

∑
j∈Ni

θij [t](x̂j [t]− x̂i[t]). (4)

Assumption 1. For all time steps t ∈ Z≥0 and for each healthy agent i ∈ H, the

weight θij [t] satisfies the following conditions.

(1) θij [t] ≥ ω, ∀j ∈ Ni , where ω ∈ (0, 1);

(2) θij [t] = 0 if j /∈ Ni;

(3)
∑n

j=1 θij [t] = 1, where n = |V|.

Remark 1. Note that choosing an appropriate control gain ε for Eq. (2) is im-

portant to ensure both the convergence rate and the steady performance. When

the control gain is too small, the system may experience a slow convergence rate.

When the control gain is too large, the state variables of healthy agents may exhibit

oscillations.

Subsequently, one defines ei[t] = x̂i[t] − xi[t] as the error term and dij [t] =

x̂i[t] − x̂j [t] as the difference between the latest broadcast states of agent i and

agent j. By invoking Eqs. (1) and (2), the error term ei[t] can be mathematically

expressed as

ei[t] = (t− tih)ε
∑
j∈Ni

θij [t]dij [t]. (5)

Note that dij [t] may vary for all t ∈ [tih, t
i
h+1), since agent i’s neighbors may trigger

at any step during this interval. Thus it is difficult to calculate the exact value

of ei[t]. However, the upper bound of ei[t] can be estimated if one finds an upper

bound for dij [t]. Then, the next triggering step tih+1 could be estimated at the
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(a) Scenario of tjhj+1 < tihi+1.

(b) Scenario of tjhj+1 ≥ tihi+1.

Fig. 1. Relation between tihi
, tjhj

, tihi+1, t
j
hj+1, t

1
ij [t], and t2ij [t].

current triggering step tih. To this end, one will eventually guarantee that ei[t]

decreases exponentially as

|ei[t]| ≤ αe−βt, (6)

where α, β ∈ R>0. Notice that Eq. (6) is also an essential condition to guarantee

secure consensus based on the static and dynamic event-triggering mechanisms.15,16

Next, one develops the self-triggering control protocol. To start with, let

A = 1− ω

2
, B = 2(1− ω)εα. (7)

The reason for such definition can be found in Eq. (31), where the time-invariant

parameters 1 − ω/2 and 2(1 − ω) are denoted as A and B, respectively, for the

convenience of subsequent derivation.

At agent i’s triggering step tihi
, agent i can obtain agent j’s latest triggering

step tjhj
, which is before tihi

, and its next triggering step tjhj+1, which is after tihi
,

where j ∈ Ni. Then, the difference dij [t] is constant for t ∈ [tihi
, tjhj+1]. For the

convenience of expression, we define

t1ij [t] = min
{
t, tjhj+1

}
, t2ij [t] = max

{
t, tjhj+1

}
, t ∈

[
tihi

, tihi+1

)
. (8)

To show the relation between these time steps more intuitively, Fig. 1 discusses

the two scenarios regarding tihi+1 and tjhj+1. According to the definitions of t1ij [t]

and dij [t], one knows that dij [t] is constant for t ∈
[
tihi

, t1ij [t]
]
. For t > t1ij [t], the

difference dij [t] has an upper bound given in Eq. (35). By invoking Eq. (5), one

designs the following function w.r.t. agent i:

gi[t] = ε

∣∣∣∣∣∣
∑
j∈Ni

θij [t](t
1
ij − tih)dij [t

i
h]

∣∣∣∣∣∣+ ε
∑
j∈Ni

θij [t]

t2ij−1∑
m=tjh+1

(
2αe−βt + f [m]

)
, (9)
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where

f [m] = AtLmax +
At − e−βt

A− e−β
B. (10)

The parameter Lmax satisfies Lmax ≥ L[0], where L[t] is a Lyapunov function

candidate, which will be defined in Eq. (26).

It should be noted that the motivation of designing Eq. (9) is to find an upper

bound for ei[t], and the reason of defining Eq. (10) can be found in Eq. (34).

Now, one lets the first triggering step ti0 for each agent i ∈ V be ti0 = 0. Then,

agent i determines the subsequent triggering steps
{
tih
}∞
h=1

through

tih+1 = min
{
t > tih : gi[t] > αe−βt

}
. (11)

Notice that in Eq. (11), the left term gi[t] increases w.r.t. t ∈
[
tih, t

i
h+1

)
, the right

term αe−βt decreases w.r.t. t ∈
[
tih, t

i
h+1

)
, and gi[t

i
h] = 0. Therefore, given the latest

triggering step tih, agent i could estimate the next triggering step tih+1 by solving

Eq. (11).

2.3. Attack model and secure consensus

In the context of adversarial attack, agents in the MAS are classified into healthy

agents and faulty agents according to the following definitions:

Definition 3 (Healthy agent).9 An agent is said to be healthy if it sends its

state variable xi[t] to all of its neighbors at each time step t and uses the rule (1)

for state update.

Definition 4 (Faulty agent).9 An agent is said to be faulty if it sends its state

variable xi[t] to all of its neighbors at each time step t, but its state update is

uncontrolled by the designed rule (manipulated by attackers).

We denote the sets of healthy and faulty agents as H and F , respectively. Then,

it holds H ⊆ V and F := V\H. Note that the identities of faulty agents are

unknown to healthy agents, while the faulty agents possess the knowledge about the

network topology to perpetrate a more targeted adversarial attack (e.g. compromise

vulnerable agents). In addition, we consider a limitation on the maximum number

of faulty agents in the neighbor set of each healthy agent and introduce the following

attack model:

Definition 5 (f-local attack model).9 The set of faulty agent F is said to be

an f -local attack model if there exist at most f faulty agents in the neighbor set of

each healthy agent, i.e., |Ni ∩ F| ≤ f, ∀i ∈ V\F , where f ∈ Z≥0.

The f -local attack model is usually reflected through the communication topol-

ogy. Thus, a graphical example of the 1-local attack model is provided in Fig. 2 to

understand the notion of attack model more intuitively. Note that the only differ-

ence between Fig. 2(a) and Fig. 2(b) is that there exits a directed edge from Agent 1

to Agent 2 in Fig. 2(b). However, Fig. 2(a) satisfies the 1-local attack model, while
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(a) A digraph that satisfies the 1-local

attack model.

(b) A digraph that does not satisfy the

1-local attack model.

Fig. 2. A graphical example of the 1-local attack model.

Fig. 2(b) does not. This is because in Fig. 2(b), the neighbor set of Agent 2 contains

two faulty agents. Through Fig. 2, the notion of attack model is presented more

intuitively.

Remark 2. The introduced f -local attack model originates from the pioneering

work9 and has been widely studied in the context of fault-tolerant broadcasting.21,22

The purpose of using the f -local attack model is to pose an upper bound on the

number of compromised nodes in each agent’s neighborhood, thereby quantifying

the scope of threats. In the subsequent theoretical analysis and numerical examples,

the f -local attack model is also a key condition to achieve secure consensus with

the proposed method.

To proceed, the definition of secure consensus is presented below.

Definition 6 (Secure consensus). The MAS is said to achieve secure consensus

if the following two conditions hold for all initial state variables of agents and any

possible faulty set:

• Security condition: The state variable of each healthy agent i ∈ H fulfills

xi[t] ∈ S, ∀t ∈ Z≥0, where S ⊂ R is a safety interval.

• Consensus condition: For each pair of healthy agents i, j ∈ H, the

upper limit of the difference between their state variables is zero, i.e.,

lim supt→∞ |xi[t]− xj [t]| = 0.

2.4. Secure consensus algorithm based on self-triggering strategy

To tackle the secure consensus problem presented in Definition 6, one develops a

secure consensus algorithm based on the self-triggering mechanism introduced in

Sec. 2.2. The main steps are exhibited in Algorithm 1, and the corresponding flow
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chart is illustrated in Fig. 3. Taking the healthy agent i ∈ H as an example. At each

triggering step tih, agent i firstly needs to filter out the potential malicious states

in its neighbor set. This is achieved by the MSR idea. Specifically, agent i deletes

the neighbors’ broadcast states that are excessively large or excessively small. It

has been demonstrated in Ref. 9 that this operation can efficiently eliminate the

threat and enable the healthy agents to achieve secure consensus. Subsequently,

the retained neighbor set Ji[t] is obtained, and agent i will use its own state and

the states received from Ji[t] to compute the control input ui[t
i
h] and estimate the

next triggering step tih+1. Then, the state xi[th] and the step tih+1 will be sent

to agent i’s neighbors. In addition, at the triggering steps tjh′ ∈
[
tih, t

i
h+1

)
of the

retained neighbors j ∈ Ji[t], agent i will also update its control input. When the

next triggering step tih+1 arrives, agent i will perform the same operation as above.

Note that Algorithm 1 is an attack-tolerant method, which will be deployed on

all agents in the MAS. However, since the faulty agents have been manipulated

by attackers, only the healthy agents will execute Algorithm 1 for state update.

It should be also noted that this algorithm consists of two essential parts: threat

elimination (Step 2: (i)-(iii)) and self-triggering strategy (Step 2: (iv)-(vi)). The

former eliminates the potential threats for each healthy agent, while the latter

enables each agent to estimate the next triggering step at the current triggering step.

Through Algorithm 1, not only the malicious information sent by neighbors can

be efficiently eliminated, but also the frequent monitoring to neighbors’ broadcast

states can be avoided.

3. Secure Consensus Analysis

With Algorithm 1, the graph condition to achieve secure consensus is further derived

in this section. To start with, let M [t] = maxi∈H {xi[t]} and m[t] = mini∈H {xi[t]}.
Then, the following lemma presents a vital relation w.r.t. these two quantities.

Lemma 1. Let Assumption 1 hold. Suppose that each healthy agent executes Algo-

rithm 1. For each time step t ∈ Z≥0, it holds

M [t+ 1] ≤ M [t] + 2εαe−βt,

m[t+ 1] ≥ m[t]. (15)

Proof. Consider a healthy agent i ∈ H. Its state update adheres to

xi[t+ 1] = xi[t] + ε
∑

j∈Ji[t]

θij [t](x̂j [t]− x̂i[t]) (16)



December 5, 2024 8:34 output

10 Z. Liao et al.

Fig. 3. Flow chart of Algorithm 1.

Since ei[t] = x̂i[t]− xi[t], it yields

xi[t+ 1] = xi[t] + ε
∑

j∈Ji[t]

θij [t](ej [t] + xj [t]− ei[t]− xi[t])

=

1− ε
∑

j∈Ji[t]

θij [t]

xi[t] + ε
∑

j∈Ji[t]

θij [t]xj [t]

+ ε
∑

j∈Ji[t]

θij [t](ej [t]− ei[t]). (17)
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Algorithm 1 Secure consensus algorithm based on self-triggering mechanism

1: Initialize α, β ∈ R>0, hi = 0, and ti0 = 0;

2: At triggering step tih, agent i executes the following operations:

(i) Receive
{
x̂j [t

i
h] | j ∈ Ni

}
and sort them in ascending order.

(ii) If there are fewer than f variables x̂j [t
i
h] strictly smaller or larger than xi[t

i
h],

then delete all these auxiliary variables; Otherwise, delete the f smallest

and largest x̂j [t
i
h].

(iii) Obtain Ji[t] as the set of retained neighbors for agent i.

(iv) Compute the control input ui[t
i
h] according to

ui[t] = ε
∑

j∈Ji[t]

θij [t](x̂j [t]− x̂i[t]), (12)

(v) Estimate the next triggering step according to

tih+1 = min
{
t > tih : gi[t] > αe−βt

}
, (13)

where

gi[t] = ε

∣∣∣∣∣∣
∑

j∈Ji[t]

θij [t](t
1
ij − tih)uij [t

i
h]

∣∣∣∣∣∣+ε
∑

j∈Ji[t]

θij [t]

t2ij−1∑
m=tjh+1

(
2αe−βt + f [m]

)
.

(14)

(vi) Send tih+1 and xi[t
i
h] to agent i’s neighbors.

3: At triggering step tjh′ of the retained neighbor j ∈ Ji[t] with tjh′ ∈
[
tih, t

i
h+1

)
,

agent i computes its control input ui[t] according to Eq. (12).

4: Set hi to hi + 1 and goes back to Step 2.

From the absolute value inequality, one produces

ej [t]− ei[t] ≤ |ej [t]− ei[t]| ≤ |ej [t]|+ |ei[t]|. (18)

Synthesizing Eq. (18) with Assumption 1 and Eq. (5), one rewrites Eq. (17) as

xi[t+ 1] ≤

1− ε
∑

j∈Ji[t]

θij [t]

M [t] + ε
∑

j∈Ji[t]

θij [t]M [t] + 2εαe−βt

= M [t] + 2εαe−βt. (19)

Since Eq. (19) holds for all healthy agents, one concludes

M [t+ 1] ≤ M [t] + 2εαe−βt. (20)

Regarding m[t+ 1] ≥ m[t], it follows from the absolute value inequality that

ej [t]− ei[t] ≥ −(|ej [t]|+ |ei[t]|) ≥ 0. (21)
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Subsequently, one can rewrite Eq. (17) as

xi[t+ 1] ≥

1− ε
∑

j∈Ji[t]

θij [t]

m[t] + ε
∑

j∈Ji[t]

θij [t]m[t]

= m[t]. (22)

Since Eq. (22) holds for all healthy agents, one eventually concludes

m[t+ 1] ≥ m[t]. (23)

This completes the proof of Lemma 1.

With Lemma 1, one further provides the condition on network topology to

ensure secure consensus with Algorithm 1.

Theorem 1. Consider a multi-agent network modeled by G = (V, E). Let Assump-

tion 1 hold. Suppose that the faulty set F satisfies the f -local attack model. Then,

secure consensus is guaranteed with Algorithm 1 if G is (2f + 1)-robust.

Proof. For ϵ ∈ R and t ∈ Z≥0, let

XM (t, ϵ) =
{
i ∈ V : xi[t] > M [t]− ϵ

}
,

Xm(t, ϵ) = {i ∈ V : xi[t] < m[t] + ϵ} . (24)

Moreover, one defines

YM (t, ϵ) = XM (t, ϵ) ∩H,

Ym(t, ϵ) = Xm(t, ϵ) ∩H, (25)

where YM (t, ϵ) and Ym(t, ϵ) contain the healthy agents in XM (t, ϵ) and Xm(t, ϵ),

respectively.

Subsequently, one constructs the Lyapunov function candidate L[t] as

L[t] = M [t]−m[t]. (26)

Then, one focuses on two nonempty and disjoint sets YM (t, ϵ0) and Ym(t, ϵ0),

where ϵ0 = L[t]/2. Since G is (2f + 1)-robust, there exists an agent i in either

YM (t, ϵ0) or Ym(t, ϵ0) that has at least 2f + 1 neighbors outside its respective set.

Suppose i ∈ YM (t, ϵ0). Since the faulty set F satisfies the f -local attack model

and each healthy agent executes Algorithm 1, at least one of agent i’s 2f + 1

neighbors will be retained and its state will be used for agent i’s update, i.e.,

xj [t] ≤ M [t] − ϵ0, ∃j ∈ Ji[t]. From Lemma 1, one obtains that the largest state

that agent i will use for update at time step t is M [t] + 2εαe−βt. By placing the

largest possible weight 1 − ω on M [t] + 2εαe−βt and placing the smallest possible

weight ω on M [t]− ϵ0, one produces

xi[t+ 1] ≤ (1− ω)(M [t] + 2εαe−βt) + ω(M [t]− ϵ0)

= M [t]− ωϵ0 + 2(1− ω)εαe−βt. (27)
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Note that Eq. (27) also holds for healthy agents in , since agent i will use its own

state for update. This fact means

M [t+ 1] ≤ M [t]− ωϵ0 + 2(1− ω)εαe−βt. (28)

On the other hand, it follows from Lemma 1 that

m[t+ 1] ≥ m[t]. (29)

Synthesizing Eq. (28) with Eq. (29) yields

M [t+ 1]−m[t+ 1] ≤ M [t]−m[t]− ωϵ0 + 2(1− ω)εαe−βt, (30)

By invoking Eq. (26) and the definition of ϵ0, Eq. (30) can be reorganized as

L[t+ 1] ≤ L[t]− ωϵ0 + 2(1− ω)εαe−βt

= L[t]− ω
L[t]

2
+ 2(1− ω)εαe−βt

= (1− ω

2
)L[t] + 2(1− ω)εαe−βt

= AL[t] +Be−βt. (31)

By iteration, one further derives

L[t+ n] ≤ AnL[t] +B

n−1∑
l=0

Ale−β(t+n−1−l). (32)

Let t = 0 and n = t. Then, Eq. (32) can be rewritten as

L[t] ≤ AtL[0] +B

t−1∑
l=0

Ale−β(t−1−l)

≤ AtLmax +
At − e−βt

A− e−β
B. (33)

To proceed, one seeks an upper bound for |xi[t]− xj [t]|, i.e.,

|xi[t]− xj [t]| ≤ M [t]−m[t] = L[t]

≤ AtLmax +
At − e−βt

A− e−β
B

= f [t]. (34)

Then, the upper bound for dij [t] is

|dij [t]| = |x̂i[t]− x̂j [t]|

≤ |x̂i[t]− xi[t]|+ |x̂j [t]− xj [t]|+ |xi[t]− xj [t]|

≤ 2αe−βt + f [t] (35)
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Next, one needs to seek an upper bound for ei[t]. To this end, one focuses on

triggering step tih, at which agent i has known tjh, t
j
h=1, and xj [t

j
h] w.r.t. its neighbors

j ∈ Ni. Note that dij [t] is constant for t ∈ [tih, t
1
ij), where t1ij has been defined in

Eq. (8). For t > t1ij , the difference dij [t] is upper bounded by 2αe−βt + f [t] from

Eq. (35). Consequently, one produces

ei[t] =

∣∣∣∣∣∣(t− tih)ε
∑

j∈Ji[t]

θij [t]dij [t]

∣∣∣∣∣∣ ≤ gi[t], t ∈ [tih, t
i
h+1), (36)

which indicates that |ei[t]| is bounded by gi[t]. Thus, with the self-triggering con-

dition (11), one eventually obtains

|ei[t]| ≤ αe−βt, (37)

which holds for all t ∈ [tih, t
i
h+1). This fact means that all state errors will decrease

exponentially. Moreover, one produces limt→∞ L[t] = 0 from Eq. (31). Hence, secure

consensus is guaranteed with the proposed self-triggering strategy. This completes

the proof of Theorem 1.

Remark 3. From the viewpoint of practical applications, Theorem 1 provides an

attack-tolerant approach to defend against potential adversarial attacks. For ex-

ample, Santilli et al.23 proposed an attack-tolerant strategy to achieve static se-

cure containment for multi-robot systems. Regarding the practical multi-microgrid

systems, Yassaie et al.24 addressed the secure consensus problem when some mi-

crogrids are subject to false data injection and replay attacks, and Liao et al.12

addressed an economic dispatch problem (EDP) under adversarial environments.

The design of secure algorithms in both studies is based on the attack-tolerant

idea. In addition, Shahabadi et al.25 demonstrated that the introduction of self-

triggering mechanism can efficiently eliminate the need for continuous monitoring

of the triggering condition for islanded microgrids. Thus, extending the proposed

self-triggering secure-consensus algorithm to practical systems will be also one of

our future research work.

4. Numerical Example

In this section, one provides three numerical examples to exhibit the effectiveness,

scalability, and superior performance of Algorithm 1. To start with, the effective-

ness of the proposed method is validated through a comparative case study with an

existing self-triggering strategy. Subsequently, the obtained results are extended to

a larger network topology, where two faulty agents aim to compromise the healthy

agents in the network. Finally, another comparative case study is conducted to

demonstrate the superior performance of the proposed self-triggering strategy com-

pared with the existing static and dynamic event-triggering strategies.15,16
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Fig. 4. A 3-robust digraph with six nodes.

Fig. 5. Trajectories of agents using the algorithm in Ref. 18. The healthy agents fail to achieve

secure consensus.

4.1. Effectiveness validation

Consider a multi-agent network modeled by G = (V, E); see Fig. 4. Note that G
is 3-robust, which satisfies the sufficient condition for achieving secure consensus

with Algorithm 1 when the MAS is subject to the 1-local attack model. Let the

initial states of all agents be [x1[0], · · · , x6[0]]
T = [2.5,−4.3, 6.8, 5.9,−1.3,−3.6]T.

The safety interval is obtained as = [mini∈H xi[0],maxi∈H xi[0]] = [−4.3, 6.8]. In

addition, one assumes that Agent 1 is attacked and becomes a faulty agent at the

first time step, whose motion adheres to x1[t] = 0.5× t. It can be verified that the

MAS satisfies the 1-local attack model. According to Theorem 1, secure consensus

can be guaranteed with Algorithm 1. Regarding the self-triggering mechanism, one

lets α = 8, β = 0.1. Moreover, the control gain is set as ε = 0.4.
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(a) The healthy agents achieve secure consensus.

(b) Triggering steps of healthy agents.

Fig. 6. Trajectories and triggering behaviors of agents using the proposed secure consensus algo-

rithm.

Firstly, Fig. 5 illustrates the evolution of the state variables of agents using

the consensus algorithm in Ref. 18, which does not consider the security factor,

but pursues average consensus. One observes that all healthy agents are severely

affected by Agent 1 and their state variables exceed the safety interval, thus the

consensus cannot be guaranteed in this case.

Subsequently, one applies Algorithm 1 and obtains the numerical result in Fig. 6.

From Fig. 6(a), it is observed that secure consensus is guaranteed, since the state

variables of healthy agents converge to the same consensus value within the safety

interval, regardless of the misbehavior of Agent 1. Furthermore, the introduction

of self-triggering mechanism reduces the communication times between agents, as
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Fig. 7. A 3-robust digraph with eight nodes.

illustrated in Fig. 6(b). The communication overhead is thereby mitigated. Overall,

the effectiveness of the proposed method is validated.

4.2. Scalability validation

Consider a larger multi-agent network modeled by G = (V, E); see Fig. 7. Note that

G is still 3-robust, which satisfies the sufficient condition for achieving secure con-

sensus with Algorithm 1 when the MAS is subject to the 1-local attack model. Let

the initial states of all agents be [x1[0], · · · , x8[0]]
T = [0, 2, 1, 0.5, 3,−0.5,−1,−2]T.

The safety interval is obtained as = [mini∈H xi[0],maxi∈H xi[0]] = [−2, 3]. In addi-

tion, one assumes that Agents 1 and 2 are attacked and become faulty agents at

the first time step, whose motions adhere to x1[t] = 0.5× t and x2[t] = rand(−5, 5),

where rand(−5, 5) refers to a random value in the interval (−5, 5). It can be ver-

ified that the MAS still satisfies the 1-local attack model, since the neighbor set

of each agent contains at most one faulty agent. According to Theorem 1, secure

consensus can be guaranteed with Algorithm 1. Other settings are the same as that

in Section 4.1.

Now one applies Algorithm 1 and obtains the numerical result in Fig. 8. From

Fig. 8(a), it is observed that secure consensus is achieved, since the state variables

of healthy agents converge to the same consensus value within the safety interval,

regardless of the misbehaviors of Agents 1 and 2. Furthermore, the introduction

of self-triggering mechanism reduces the communication times between agents, as

illustrated in Fig. 8(b). Overall, the scalability of the proposed method is thereby

validated.

4.3. Comparison with the existing event-based algorithms

Next, we compare the proposed self-triggering secure consensus algorithm with

the existing secure algorithms based on static and dynamic event-triggering mech-

anisms.15,16 Note that all of them can ensure secure consensus, while we mainly
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(a) The healthy agents achieve secure consensus.

(b) Triggering steps of healthy agents.

Fig. 8. Trajectories and triggering behaviors of agents using the proposed secure consensus algo-

rithm.

focus on comparing their triggering behaviors. Fig. 9(a) shows the triggering counts

of healthy agents using three different triggering strategies. The average triggering

counts for the static, dynamic, and self-triggering strategies are 37.6, 32.4, and

63.4, respectively. This result indicates that the communication burden using the

self-triggering strategy is slightly heavier than using the static or dynamic event-

triggering strategy. However, from Fig. 9(b), one observes that the static or dynamic

event-triggering strategy needs to monitor agent j in order to receive x̂j [t] at each

time step, while the self-triggering strategy only needs to monitor x̂j [t] at triggering

steps. Overall, the self-triggering strategy is beneficial for reducing the consumption



December 5, 2024 8:34 output

Self-triggering Secure Consensus Against Adversarial Attacks 19

(a) Triggering counts between three event-based strategies.

(b) Monitoring times between three event-based strategies.

Fig. 9. Comparison of trigger behaviors using three event-based strategies within 250 time steps.

of communication resources.

5. Conclusion

In this work, an attack-tolerant algorithm is developed to tackle the secure consen-

sus problem for MASs. The idea of MSR and self-triggering mechanism are applied

in the algorithm design. The numerical results demonstrate that the MAS achieves

consensus within the safety interval by implementing the proposed secure consen-

sus algorithm, and the heavy communication burden is mitigated. Furthermore,

the frequent monitoring of x̂j [t] is avoided with the introduction of self-triggering



December 5, 2024 8:34 output

20 Z. Liao et al.

strategy. In the future, we will investigate the secure consensus problem for more

complex situations and systems, e.g., multi-dimensional space or nonlinear MASs.

Moreover, we will consider more application-oriented secure coordination tasks, e.g.,

secure state estimation and secure distributed optimization.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant

Nos. 62173147, 62303030, 62403028, U2233212), Beijing Municipal Natural Science

Foundation (Grant No. L221008), Open Fund of Science and Technology on Ther-

mal Energy and Power Laboratory (Grant No. TPL2022C02).

References

1. R. Olfati-Saber, J. A. Fax and R. M. Murray, Proc. IEEE 95, 215 (2007).
2. Q. Zhou, G. Feng and X. Xu, Guid. Navig. Control 2, p. 2250019 (2022).
3. Z. Sun, H. G. de Marina, G. S. Seyboth, B. D. Anderson and C. Yu, IEEE Trans.

Control Syst. Technol. 27, 192 (2018).
4. M. Huo, H. Duan and Y. Fan, Guid. Navig. Control 1, p. 2150004 (2021).
5. L. Li, P. Shi and C. K. Ahn, IEEE T. Cybern. 52, 4647 (2020).
6. A. Teixeira, I. Shames, H. Sandberg and K. H. Johansson, Automatica 51, 135 (2015).
7. Y. Yang, Y. Xiao and T. Li, IEEE T. Cybern. 52, 12805 (2021).
8. Z. Liao, J. Shi, Y. Zhang, S. Wang and Z. Sun, arXiv preprint arXiv:2402.10505

(2024).
9. H. J. LeBlanc, H. Zhang, X. Koutsoukos and S. Sundaram, IEEE J. Sel. Areas Com-

mun. 31, 766 (2013).
10. Y. Yang and W. Sun, Automatica 169, p. 111834 (2024).
11. G. Wen, Y. Lv, W. X. Zheng, J. Zhou and J. Fu, IEEE Trans. Autom. Control 68,

6466 (2023).
12. Z. Liao, S. Wang, J. Shi, M. Li, Y. Zhang and Z. Sun, ISA Trans. 149, 1 (2024).
13. S. Koushkbaghi, M. Safi, A. M. Amani, M. Jalili and X. Yu, IEEE Transactions on

Cybernetics (2024).
14. X. Gong, Y. Chen, F. Zou, W. Liu, J. Shen and Z. Shu, IEEE Transactions on

Cybernetics (2024).
15. Y. Wang and H. Ishii, IEEE Trans. Control Netw. Syst. 7, 471 (2020).
16. Z. Liao, J. Shi, S. Wang, Y. Zhang and Z. Sun, IEEE Trans. Circuits Syst. II-Express

Briefs 71, 3463 (2024).
17. X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, IEEE Trans. Autom. Control

64, 3300 (2018).
18. R. K. Mishra and H. Ishii, Int. J. Robust Nonlinear Control 33, 159 (2023).
19. H. Matsume, Y. Wang and H. Ishii, Nonlinear Anal.-Hybrid Syst. 42, p. 101091 (2021).
20. H. Matsume, Y. Wang, H. Ishii and X. Défago, Nonlinear Anal.-Hybrid Syst. 52, p.
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